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where ([ - [[ is the Bombieri norm

and the inequality is sharp. - B. Beanzamy
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BOMBIERI NORM = KOSTLAN NORM = WEYL NORM
Given a bivariate homogeneous polynomial of degree N,
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where ¥, Y are complex Variables. The Bombieri horm of g satisfies
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where the integration is made with respect to the volume form arising from the
Stahdard Rjemahhiah structure in the Complex projective space.
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Every univariate degree N polyhomial with complex coefficients P(z) = PINE A
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has a homogeneous counterpart q(x,y) = > %% y"™" and its Bombieri norm is
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Lower lbounds for verms of products of polynomials via bombieri inequality.
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MAIN THEOREM

Given a set of complex points 2,, ... ,2, we have
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—= The previously knowrn best bound was qiven by the Bombieri inequality
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LOGARITHMIC ENERGY

in the Z-dimensional sphere of radius 1 is defined
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ue main problems ou Approximation Theory!

rTha logarithmic energy of a set of points wn = {xi, ...,

as
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The mivimal value of +he logarithmic everay and the
covfigurations of points attaiving such value are one of
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PROOF OF THE SHARPNESS:

The proof involves two mathematical objects

Theorem (Shub, Smale, 43'). I a set of points on the sphere has small logarithmic
everay then the condition wumber of the associated polyomial is also small,

Theorem (Etayo, 14"). If a polynomial p(x) € ¢[x] has a small condition number,
() then the associated set of poiuts on the sphere has simall logarithimic energy,

—

Idea of the proof: 9o to the sphere

wv = {X, .., Xu} set of
points on the sphere

Stereographical
p“/\:—)/(
{ %4, - , Zu} set of points on the plane

P () = ]—1[ (%= 2¢) unigue

monic polynomm/ whose roots
are {2, , ... , Zn}

CONDITION NUMBER

Given a polynomial P(x) in €[x] and one of its roots z,m
condition humber of P at z is defined as
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Note that the condition number duavtifies how much the
roots of a polywomial change when we perturbe a little
bit the coefficients of the polymomial.
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1. We +ake a polynomial plx)eCLx] with optimal condition number. ¢———— SOLVED RECENTLY BY BELTRAN, ETAYO, MARZO & ORTEGA-GERDA' [&] 7 HE]
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2. Usivg Theorem @ we olbtain a bound for the lo@arlﬂnmlc evergy of the associated spherical points.

3. Through eduation @wc obtain an upper bound for =2 —
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To prove the WMain Theorem completely we veed a few more analytical developments.
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